Spatial and spatiotemporal machine-learning models require a suitable framework for their model assessment, model selection, and hyperparameter tuning, in order to avoid error estimation bias and over-fitting. This contribution reviews the state-of-the-art in spatial and spatiotemporal CV, and introduces the \proglang{R} package mlr3spatiotempcv as an extension package of the machine-learning framework \textbf{mlr3}. Currently various \proglang{R} packages implementing different spatiotemporal partitioning strategies exist: \pkg{blockCV}, \pkg{CAST}, \pkg{kmeans} and \pkg{sperrorest}. The goal of \pkg{mlr3spatiotempcv} is to gather the available spatiotemporal resampling methods in \proglang{R} and make them available to users through a simple and common interface. This is made possible by integrating the package directly into the \pkg{mlr3} machine-learning framework, which already has support for generic non-spatiotemporal resampling methods such as random partitioning. One advantage is the use of a consistent nomenclature in an overarching machine-learning toolkit instead of a varying package-specific syntax, making it easier for users to choose from a variety of spatiotemporal resampling methods. This package avoids giving recommendations which method to use in practice as this decision depends on the predictive task at hand, the autocorrelation within the data, and the spatial structure of the sampling design or geographic objects being studied.
翻译:空间和空间时空机器学习模型需要适合的模型评估、模型选择和超参数调试框架,以避免错误估计偏差和过度装配。 此贡献会审查空间和空间表面时空 CV 中的最新技术, 并引入\ pglang{ R} 软件包 mlr3spatotempcv 作为机器学习框架 \ textbf{mlr3} 的扩展包。 目前, 执行不同空间分布战略的各种空间选择/ R} 套件都存在:\ pkg{ blockCV},\ pkkk{ CAST},\ pkg{koffens} 和\ pkkkg{kofferomposortomtoptopcv} 。 目标是为了收集在 proglan- levelal sampal reampal reamplementinginging 中可用的 方法, 通过一个简单和共同的界面向用户提供这些套件, 直接将这个套件从远程的地理空间结构 recal realstalstal relistead siewing a makeding a max max max max max max max max max max max max max max max max max max max max make max make max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max max mas max max max max max max max max max max mas max mas mas max max max mas mas max max max mas mas max max max ma