A code is called a locally repairable code (LRC) if any code symbol is a function of a small fraction of other code symbols. When a locally repairable code is employed in a distributed storage systems, an erased symbol can be recovered by accessing only a small number of other symbols, and hence alleviating the network resources required during the repair process. In this paper we consider repeated-root constacyclic codes, which is a generalization of cyclic codes, that are optimal with respect to a Singleton-like bound on minimum distance. An LRC with the structure of a constacyclic code can be encoded efficiently using any encoding algorithm for constacyclic codes in general. In this paper we obtain optimal LRCs among these repeated-root constacyclic codes. Several infinite classes of optimal LRCs over a fixed alphabet are found. Under a further assumption that the ambient space of the repeated-root constacyclic codes is a chain ring, we show that there is no other optimal LRC.
翻译:如果任何代码符号是其它代码符号的一小部分函数,则代号称为可在当地修理的代号。当一个可在当地修理的代号用于分布式储存系统时,一个被擦除的代号只能通过获取少量其他符号来恢复,从而减轻修复过程中所需的网络资源。在本文中,我们考虑的是重复的根代码,这是对一个像单子一样的在最小距离上绑定的单子式代号的最优化的复式代号。一个具有复式代号结构的代号可以有效地编码。在本文中,我们从这些重复的根复式代号中获取最佳的代号。在固定字母上找到若干无限的最佳代号。根据一个进一步假设,即重复根代号周围的空间是一个链圈,我们显示没有其他最佳的代号。