We consider a system of $N$ interacting particles, governed by transport and diffusion, that converges in a mean-field limit to the solution of a McKean-Vlasov equation. From the observation of a trajectory of the system over a fixed time horizon, we investigate nonparametric estimation of the solution of the associated nonlinear Fokker-Planck equation, together with the drift term that controls the interactions, in a large population limit $N \rightarrow \infty$. We build data-driven kernel estimators and establish oracle inequalities, following Lepski's principle. Our results are based on a new Bernstein concentration inequality in McKean-Vlasov models for the empirical measure around its mean, possibly of independent interest. We obtain adaptive estimators over anisotropic H\"older smoothness classes built upon the solution map of the Fokker-Planck equation, and prove their optimality in a minimax sense. In the specific case of the Vlasov model, we derive an estimator of the interaction potential and establish its consistency.
翻译:我们考虑的是由以运输和扩散为主的以平均场限为单位的相互作用粒子系统,它与McKan-Vlasov方程式的解决方案相融合。我们从观察一个固定时间跨度的系统轨迹中,对相关非线性Fokker-Planck方程式的解决方案的不参数估计,以及控制这些互动的漂移术语,在大量人口范围内限制$\rightrowr\infty$。我们根据Lepski的原则,建立数据驱动的内核测量器,并建立起甲骨不平等。我们的结果基于在McKegan-Vlassov模型中围绕其平均值(可能具有独立利益)的经验性测量模型的新的Bernstein浓度不平等。我们在Fokker-Planck方程式的解算图的基础上,获得了对厌食性H\"老的光滑动层的适应性估计器,并证明了它们的最佳性。在Vlasov模型的具体案例中,我们得出了互动潜力的估测点,并确定了其一致性。