Positive unlabeled learning is a binary classification problem with positive and unlabeled data. It is common in domains where negative labels are costly or impossible to obtain, e.g., medicine and personalized advertising. We apply the locally purified state tensor network to the positive unlabeled learning problem and test our model on the MNIST image and 15 categorical/mixed datasets. On the MNIST dataset, we achieve state-of-the-art results even with very few labeled positive samples. Similarly, we significantly improve the state-of-the-art on categorical datasets. Further, we show that the agreement fraction between outputs of different models on unlabeled samples is a good indicator of the model's performance. Finally, our method can generate new positive and negative instances, which we demonstrate on simple synthetic datasets.
翻译:积极的无标签学习是一个包含正和无标签数据的二进制分类问题。 在负面标签成本昂贵或无法获取的领域中,例如药品和个性化广告中,这是常见的。 我们对正无标签学习问题应用本地净化状态强力网络,并测试我们关于MNIST图像和15个绝对/混合数据集的模型。在MNIST数据集中,我们甚至以极少的标签为正的样本取得了最先进的结果。同样,我们大大改进了绝对数据集方面的最新技术。此外,我们表明,在未标签样本中不同模型输出的分数是模型性能的良好指标。最后,我们的方法可以产生新的正和负实例,我们在简单的合成数据集中展示这些实例。