An effective 3D stepping control algorithm that is computationally fast, robust, and easy to implement is extremely important and valuable to character animation research. In this paper, we present a novel technique for generating dynamic, interactive, and controllable biped stepping motions. Our approach uses a low-dimensional physics-based model to create balanced humanoid avatars that can handle a wide variety of interactive situations, such as terrain height shifting and push exertions, while remaining upright and balanced. We accomplish this by combining the popular inverted-pendulum model with an ankle-feedback torque and variable leg-length mechanism to create a controllable solution that can adapt to unforeseen circumstances in real-time without key-framed data, any offline pre-processing, or on-line optimizations joint torque computations. We explain and address oversimplifications and limitations with the basic IP model and the reasons for extending the model by means of additional control mechanisms. We demonstrate a simple and fast approach for extending the IP model based on an ankle-torque and variable leg lengths approximation without hindering the extremely attractive properties (i.e., computational speed, robustness, and simplicity) that make the IP model so ideal for generating upright responsive balancing biped movements. Finally, while our technique focuses on lower body motions, it can, nevertheless, handle both small and large push forces even during terrain height variations. Moreover, our model effectively creates human-like motions that synthesize low-level upright stepping movements, and can be combined with additional controller techniques to produce whole body autonomous agents.


翻译:高效的 3D 阶梯控制算法,即计算快速、稳健和易于执行的3D 阶梯控制算法,对于性格动画研究来说极为重要和宝贵。 在本文中,我们展示了一种创新的技术,用于产生动态、互动和可控制的双向踏脚动作。我们的方法使用一种基于低维物理的模型,以创造平衡的人类类动画模型,这种模型能够处理各种各样的互动情况,例如地形高度的移动和推力,同时保持直率和平衡。我们通过将流行的倒向式反弹模型与脚踝和可变腿长机制结合起来,以创造一种可控的解决方案,在没有关键框架数据、任何离线预处理或在线优化组合式双向踏脚动作的情况下,可以实时适应无法预见的情况。我们的方法可以解释和解决与基本IP模型的简单化和限制,同时保持正向和平衡。 我们的IP模型以脚踝和可变长腿机制为基础,可以扩展一个简单和快速的方法,在不阻碍极具吸引力的实时的实时实时情况下, 能够有效地调整和快速地、 快速地、 快速地、 快速地计算、 快速地、 快速地、 快速地、 快速地、 和快速地、 制动、 和快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、快速地、制动、制动。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月10日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员