The Wigner-Smith (WS) time delay matrix relates an acoustic system's scattering matrix to its wavenumber derivative. The entries of the WS time delay matrix can be expressed in terms of energy density-like volume integrals, which cannot be efficiently evaluated in a boundary element method framework. This paper presents two schemes for efficiently populating the WS time delay matrix. The direct formulation casts the energy density-like volume integrals into integrals of the incident field and the field and/or its normal derivative over the scatterer surface. The indirect formulation computes the system's scattering matrix and its wavenumber derivative, again via surface integration, and then invokes the WS relationship to compute the WS time delay matrix. Both the direct and the indirect formulations yield equivalent results and can be easily integrated into standard boundary element codes.
翻译:Wigner-Smith(WS)时间延迟矩阵将音频系统的散射矩阵与波数衍生物联系起来,WS时间延迟矩阵的条目可以以能量密度相似的体积组成形式表示,无法在边界要素方法框架内对其进行有效评估。本文介绍了有效传播WS时间延迟矩阵的两个方案。直接配方将能量密度相似的体积结合成事故场和场和/或散射场表面的正常衍生物。间接配方计算了系统的散射矩阵及其波数衍生物,再次通过地表集成,然后援引WS关系来计算WS时间延迟矩阵。直接和间接配方产生等效结果,并很容易纳入标准的边界要素代码。