This paper envisions a multi-agent system for detecting the presence of hate speech in online social media platforms such as Twitter and Facebook. We introduce a novel framework employing deep learning techniques to coordinate the channels of textual and im-age processing. Our experimental results aim to demonstrate the effectiveness of our methods for classifying online content, training the proposed neural network model to effectively detect hateful instances in the input. We conclude with a discussion of how our system may be of use to provide recommendations to users who are managing online social networks, showcasing the immense potential of intelligent multi-agent systems towards delivering social good.
翻译:本文设想了一个多试办系统,用于检测网上社交媒体平台,如Twitter和Facebook上存在的仇恨言论。我们引入了一个新颖的框架,利用深层学习技术协调文本和不成熟的处理渠道。我们的实验结果旨在展示我们对在线内容进行分类的方法的有效性,培训拟议的神经网络模型,以有效检测输入中的仇恨事件。我们最后讨论我们的系统如何有用,为管理在线社交网络的用户提供建议,展示智能多试办系统在提供社会福利方面的巨大潜力。