Forecast reconciliation is a post-forecasting process that involves transforming a set of incoherent forecasts into coherent forecasts which satisfy a given set of linear constraints for a multivariate time series. In this paper we extend the current state-of-the-art cross-sectional probabilistic forecast reconciliation approach to encompass a cross-temporal framework, where temporal constraints are also applied. Our proposed methodology employs both parametric Gaussian and non-parametric bootstrap approaches to draw samples from an incoherent cross-temporal distribution. To improve the estimation of the forecast error covariance matrix, we propose using multi-step residuals, especially in the time dimension where the usual one-step residuals fail. To address high-dimensionality issues, we present four alternatives for the covariance matrix, where we exploit the two-fold nature (cross-sectional and temporal) of the cross-temporal structure, and introduce the idea of overlapping residuals. We evaluate the proposed methods through a simulation study that investigates their theoretical and empirical properties. We further assess the effectiveness of the proposed cross-temporal reconciliation approach by applying it to two empirical forecasting experiments, using the Australian GDP and the Australian Tourism Demand datasets. For both applications, we show that the optimal cross-temporal reconciliation approaches significantly outperform the incoherent base forecasts in terms of the Continuous Ranked Probability Score and the Energy Score. Overall, our study expands and unifies the notation for cross-sectional, temporal and cross-temporal reconciliation, thus extending and deepening the probabilistic cross-temporal framework. The results highlight the potential of the proposed cross-temporal forecast reconciliation methods in improving the accuracy of probabilistic forecasting models.


翻译:预测调和是一个后预测过程,涉及将一组不连贯的预测转换为一致的预测,使其满足多元时间序列的给定一组线性约束。在本文中,我们扩展了当前最先进的横截面概率预测调和方法,以涵盖交叉时间框架,其中也应用时间约束。我们提出的方法使用参数高斯和非参数自助法来从不连贯的交叉时间分布中提取样本。为了改善预测误差协方差矩阵的估计,我们建议使用多步残差,特别是在时间维度上,其中通常的单步残差失败。为了解决高维问题,我们提出4种协方差矩阵的替代方案,利用交叉时间结构的二重性质(横截面和时间),并引入重叠残差的思想。我们通过模拟研究来评估所提出的方法的理论和实证性质。我们进一步通过应用于澳大利亚 GDP 和澳大利亚旅游需求数据集的两个实证预测试验来评估所提出的交叉时间调和方法的有效性。对于两个应用程序,我们表明最优交叉时间调和方法在连续排名概率分数和能量分数方面显著优于不连贯的基准预测结果。总体而言,我们的研究扩展和统一了交叉横截面、时间和交叉时间调和符号,从而扩展和深化了概率交叉时间框架。结果突出了所提出的交叉时间预测调和方法在提高概率预测模型的准确性方面的潜力。

0
下载
关闭预览

相关内容

【经典书】高效机器学习,Efficient Learning Machines,263页pdf
【干货书】预测原理与实战,Forecasting: Principles & Practice
专知会员服务
93+阅读 · 2022年4月11日
专知会员服务
61+阅读 · 2020年3月4日
ICASSP 2022 | 腾讯AI Lab解读14篇入选论文
腾讯AI实验室
1+阅读 · 2022年5月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
15+阅读 · 2021年2月19日
VIP会员
相关VIP内容
【经典书】高效机器学习,Efficient Learning Machines,263页pdf
【干货书】预测原理与实战,Forecasting: Principles & Practice
专知会员服务
93+阅读 · 2022年4月11日
专知会员服务
61+阅读 · 2020年3月4日
相关资讯
ICASSP 2022 | 腾讯AI Lab解读14篇入选论文
腾讯AI实验室
1+阅读 · 2022年5月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员