Non-Euclidean data that are indexed with a scalar predictor such as time are increasingly encountered in data applications, while statistical methodology and theory for such random objects are not well developed yet. To address the need for new methodology in this area, we develop a total variation regularization technique for nonparametric Fr\'echet regression, which refers to a regression setting where a response residing in a generic metric space is paired with a scalar predictor and the target is a conditional Fr\'echet mean. Specifically, we seek to approximate an unknown metric-space valued function by an estimator that minimizes the Fr\'echet version of least squares and at the same time has small total variation, appropriately defined for metric-space valued objects. We show that the resulting estimator is representable by a piece-wise constant function and establish the minimax convergence rate of the proposed estimator for metric data objects that reside in Hadamard spaces. We illustrate the numerical performance of the proposed method for both simulated and real data, including metric spaces of symmetric positive-definite matrices with the affine-invariant distance, of probability distributions on the real line with the Wasserstein distance, and of phylogenetic trees with the Billera--Holmes--Vogtmann metric.


翻译:在数据应用中,随着诸如时间等卡路里预测值的指数化的非欧- 欧- 克利德纳数据在数据应用中日益遇到,而这种随机天体的统计方法和理论则尚未完善。为了应对这一领域新方法的需要,我们开发了非参数Fr\'echet回归的全变校正技术,这是指一个回归环境,即位于通用空间的响应与一个卡路里预测器相匹配,而且目标是有条件的Fr\'echet值。具体地说,我们试图通过一个测量器来接近一个未知的计量空间价值值功能,该测量器将最小方块的Fr\'echet版本降到最低,而与此同时,这些随机天体的统计器总变化很小,对多米值作了适当界定。我们表明,由此得出的估计值可以通过一个小的恒定函数来代表,并且为位于哈达马德空间的计量器天体物体的拟议估测算仪。我们用模拟和真实数据的拟议方法的数值性表现,包括测量正对正- 定公式的测量空间的测量空间空间的测量度空间空间空间,与瓦- 平方根- 等- 方向的焦距,与瓦- 等- 平质- 等- 等- 等- 等- 等/ 等/ 等距 等/ 等距 等距 等距 等/ 等/ 等/ 等/ 等距 等/ 等/ 等距 等等等距 等距 等距 等距 等等距 等距 等距 等距 等距

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
126+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
3+阅读 · 2017年10月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月24日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
126+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
3+阅读 · 2017年10月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员