We give a constant factor polynomial time pseudo-approximation algorithm for min-sum clustering with or without outliers. The algorithm is allowed to exclude an arbitrarily small constant fraction of the points. For instance, we show how to compute a solution that clusters 98\% of the input data points and pays no more than a constant factor times the optimal solution that clusters 99\% of the input data points. More generally, we give the following bicriteria approximation: For any $\eps > 0$, for any instance with $n$ input points and for any positive integer $n'\le n$, we compute in polynomial time a clustering of at least $(1-\eps) n'$ points of cost at most a constant factor greater than the optimal cost of clustering $n'$ points. The approximation guarantee grows with $\frac{1}{\eps}$. Our results apply to instances of points in real space endowed with squared Euclidean distance, as well as to points in a metric space, where the number of clusters, and also the dimension if relevant, is arbitrary (part of the input, not an absolute constant).


翻译:我们给出一个常数系数- 多时伪加准算法, 用于与外线或无外线的最小和整数组合。 该算法允许排除任意的一小块不变的点数。 例如, 我们演示如何计算一个解决方案, 即输入数据点分组 98 ⁇ 98 ⁇ , 并支付不超过输入数据点分组 99 ⁇ 最佳解决方案的常数倍数。 更一般地, 我们给出以下双标准近似值: 对于任何$/ eps > 0 美元, 任何输入点, 任何正整数 $n\ le n 。 我们用多元时间计算一个至少为 $( 1\ / eps) n 的成本点的组合, 最多为比 组合 $ 美元 点的最佳成本高的常数 。 近似保证值随着 $\ frac{ { 1unps} 美元的增长而增长。 我们的结果适用于具有正方欧clidean 距离的实际空间点的实例, 以及一个计量空间的点, 其中的组数数数数, 以及相关尺寸是任意的( 不变输入部分, 而不是绝对不变的不变) 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
18+阅读 · 2020年9月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
18+阅读 · 2020年9月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
3+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员