Sentiment analysis is a sub-discipline in the field of natural language processing and computational linguistics and can be used for automated or semi-automated analyses of text documents. One of the aims of these analyses is to recognize an expressed attitude as positive or negative as it can be contained in comments on social media platforms or political documents and speeches as well as fictional and nonfictional texts. Regarding analyses of comments on social media platforms, this is an extension of the previous tutorial on semi-automated screenings of social media network data. A longitudinal perspective regarding social media comments as well as cross-sectional perspectives regarding fictional and nonfictional texts, e.g. entire books and libraries, can lead to extensive text documents. Their analyses can be simplified and accelerated by using sentiment analysis with acceptable inter-rater reliability. Therefore, this tutorial introduces the basic functions for performing a sentiment analysis with R and explains how text documents can be analysed step by step - regardless of their underlying formatting. All prerequisites and steps are described in detail and associated codes are available on GitHub. A comparison of two political speeches illustrates a possible use case.


翻译:感官分析是自然语言处理和计算语言领域的一项次级纪律,可用于对文本文件进行自动化或半自动分析,这些分析的目的之一是承认一种明确的态度是正面或负面的,因为它可以包含在对社交媒体平台或政治文件和演讲以及虚构和非虚构文本的评论中。关于对社交媒体平台的评论的分析,这是以前关于半自动筛选社交媒体网络数据的指导性的延伸。关于社交媒体评论的纵向观点以及关于虚构和非虚构和非虚构文本的跨部门观点,例如整个书籍和图书馆,可以导致广泛的文本文件。通过使用可接受的跨版可靠性的情绪分析,可以简化和加速这些分析。因此,这一指导性介绍了与R进行情绪分析的基本功能,并解释如何一步一步地分析文本文件,而不论其基本格式如何。所有先决条件和步骤都作了详细描述,GitHub提供了相关的代码。对两种政治演讲的比较说明了可能的用途。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
30+阅读 · 2021年8月18日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员