We consider estimation of undirected Gaussian graphical models and inverse covariances in high-dimensional scenarios by penalizing the corresponding precision matrix. While single $L_1$ (Graphical Lasso) and $L_2$ (Graphical Ridge) penalties for the precision matrix have already been studied, we propose the combination of both, yielding an Elastic Net type penalty. We enable additional flexibility by allowing to include diagonal target matrices for the precision matrix. We generalize existing algorithms for the Graphical Lasso and provide corresponding software with an efficient implementation to facilitate usage for practitioners. Our software borrows computationally favorable parts from a number of existing packages for the Graphical Lasso, leading to an overall fast(er) implementation and at the same time yielding also much more methodological flexibility.
翻译:我们通过惩罚相应的精确矩阵来考虑对高山非方向图形模型和高方情景反常变量的估计。 虽然已经研究了对精确矩阵的单价1美元(激光激光)和2美元(晶脊)的罚款,但我们提议将两者结合起来,从而产生一种弹性网型罚款。我们允许将精确矩阵的对角目标矩阵纳入其中,从而增加了灵活性。我们推广了图形激光索的现有算法,并为相应的软件提供了有效的应用,以便利从业人员使用。我们的软件从现有的图形激光索包中借用了计算上有利的部分,从而导致总体快速(er)执行,同时产生更大的方法灵活性。