We present \textsc{HowSumm}, a novel large-scale dataset for the task of query-focused multi-document summarization (qMDS), which targets the use-case of generating actionable instructions from a set of sources. This use-case is different from the use-cases covered in existing multi-document summarization (MDS) datasets and is applicable to educational and industrial scenarios. We employed automatic methods, and leveraged statistics from existing human-crafted qMDS datasets, to create \textsc{HowSumm} from wikiHow website articles and the sources they cite. We describe the creation of the dataset and discuss the unique features that distinguish it from other summarization corpora. Automatic and human evaluations of both extractive and abstractive summarization models on the dataset reveal that there is room for improvement. % in existing summarization models We propose that \textsc{HowSumm} can be leveraged to advance summarization research.


翻译:我们为以查询为焦点的多文档汇总任务(qMDS)展示了一个新的大型数据集 。 该数据集是针对从一组来源生成可操作指令的实用案例的。 该使用案例不同于现有多文档汇总数据集所涵盖的使用案例, 并适用于教育和工业情景。 我们采用了自动方法, 以及利用现有人造的 qMDS 数据集的杠杆统计数据, 从wikishow网站文章及其引用的来源中创建了\ textsc{How Summ} 。 我们描述数据集的创建, 并讨论将其与其他汇总组合区分的独特特征。 对数据集上的采掘和抽象合成模型的自动和人性评估显示有改进的余地。 在现有的汇总模型中,% 我们建议可以利用\ textsc{HowSumm} 来推进合成研究。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
3+阅读 · 2018年12月18日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文报告 | Graph-based Neural Multi-Document Summarization
科技创新与创业
15+阅读 · 2017年12月15日
Top
微信扫码咨询专知VIP会员