6D grasping in cluttered scenes is a longstanding problem in robotic manipulation. Open-loop manipulation pipelines may fail due to inaccurate state estimation, while most end-to-end grasping methods have not yet scaled to complex scenes with obstacles. In this work, we propose a new method for end-to-end learning of 6D grasping in cluttered scenes. Our hierarchical framework learns collision-free target-driven grasping based on partial point cloud observations. We learn an embedding space to encode expert grasping plans during training and a variational autoencoder to sample diverse grasping trajectories at test time. Furthermore, we train a critic network for plan selection and an option classifier for switching to an instance grasping policy through hierarchical reinforcement learning. We evaluate and analyze our method and compare against several baselines in simulation, and demonstrate that the latent planning can generalize to the real-world cluttered-scene grasping task. Our videos and code can be found at https://sites.google.com/view/latent-grasping .
翻译:6D 在杂乱的场景中捕捉6D是机器人操纵的一个长期问题。 开放环形操纵管道可能由于不准确的状态估计而失败, 而大多数端到端的抓住方法尚未扩大到有障碍的复杂场景。 在这项工作中, 我们提出了一种新的方法, 用于在杂乱的场景中从端到端学习 6D 捕捉 6D 。 我们的等级框架根据部分点云的观测, 学会了不碰撞目标驱动的捕捉。 我们学习了一种嵌入空间, 以编码专家在训练期间掌握计划, 以及一个变式自动编码, 以抽样测试时采样各种不同的捕捉轨迹。 此外, 我们训练了一个评论网络, 用于选择计划, 并训练一个选项分类器, 以便通过等级强化学习转换到实例捕捉政策 。 我们评估并分析我们的方法, 对照模拟中的若干基线, 并证明潜在规划可以概括到真实世界的杂片状的捕捉摸任务。 我们的视频和代码可以在 https://sites.golegle.gole. com/view/latentent-grading-grappinging-grappinginginging.