This letter revisits the energy quadratization (EQ) method by introducing a novel and essential relaxation technique to improve its accuracy and stability. The EQ method has witnessed significant popularity in the past few years. Though acknowledging its effectiveness in designing energy-stable schemes for thermodynamically consistent models, the primary known drawback is apparent, i.e., its preserves a "modified" energy law represented by auxiliary variables instead of the original variables. Truncation errors are introduced during numerical calculations so that the numerical solutions of the auxiliary variables are no longer equivalent to their original continuous definitions. Even though the "modified" energy dissipation law is preserved, the original energy dissipation law is not guaranteed. In this paper, we overcome this issue by introducing a relaxation technique. The computational cost of this extra technique is negligible compared with the baseline EQ method. Meanwhile, the relaxed-EQ method holds all the baseline EQ method's good properties, such as linearity and unconditionally energy stability. This relaxed-EQ method has been applied to several widely-used phase field models to highlight its effectiveness.


翻译:本信重新审视了能源四分法(EQ)方法,引入了一种新的、基本的放松技术,以提高其准确性和稳定性。在过去几年中,EQ方法受到极大欢迎。虽然承认其在设计热动力一致模型的能源稳定计划方面的有效性,但已知的主要缺陷是显而易见的,即它保留了辅助变量而不是原始变量所代表的“修改”能源法。在数字计算过程中引入了缩短值错误,使辅助变量的数值解决方案不再等同于其最初的连续定义。即使“修改”能源消散法得到了维护,原始能源消散法也没有得到保障。在本文件中,我们通过采用放松技术克服了这一问题。与基线EQ方法相比,这一额外技术的计算成本微不足道。与此同时,宽松的EQ方法保留了所有基线EQ方法的良好特性,如线性和无条件的能源稳定性。这一宽松的 EQ方法已被应用于几个广泛使用的阶段模型,以突出其有效性。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
32+阅读 · 2021年3月8日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Deep Learning for Energy Markets
Arxiv
9+阅读 · 2019年4月10日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员