Animals are capable of extreme agility, yet understanding their complex dynamics, which have ecological, biomechanical and evolutionary implications, remains challenging. Being able to study this incredible agility will be critical for the development of next-generation autonomous legged robots. In particular, the cheetah (acinonyx jubatus) is supremely fast and maneuverable, yet quantifying its whole-body 3D kinematic data during locomotion in the wild remains a challenge, even with new deep learning-based methods. In this work we present an extensive dataset of free-running cheetahs in the wild, called AcinoSet, that contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames. We utilize markerless animal pose estimation to provide 2D keypoints. Then, we use three methods that serve as strong baselines for 3D pose estimation tool development: traditional sparse bundle adjustment, an Extended Kalman Filter, and a trajectory optimization-based method we call Full Trajectory Estimation. The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided. We believe this dataset will be useful for a diverse range of fields such as ecology, neuroscience, robotics, biomechanics as well as computer vision.
翻译:动物具有极端的敏捷性, 然而理解它们的复杂动态, 具有生态、 生物机械和进化影响, 仍然具有挑战性。 能够研究这种令人难以置信的敏捷性对于下一代自主脚步机器人的开发至关重要。 特别是, 猎豹( akinonex jubatus)非常快速和可操作, 然而在野外移动期间量化其整个体3D运动数据仍然是一项挑战, 即使采用新的深层次学习方法。 在这项工作中, 我们展示了野外自由运行的神经猎豹的广泛数据集, 叫做 AcinoSet, 包含119,490个多视图同步高速视频视频、 相机校准文档和7, 588个生物附加说明的框架。 我们使用无标记动物姿势估算来提供 2D 关键点。 然后, 我们使用三种方法作为3D 配置估算工具开发的强基线: 传统的稀薄的捆绑调整、 扩展的 Kalman 过滤器和基于轨迹的优化方法, 我们称之为全轨迹跟踪仪。 因此, 3D 将提供这样的数据范围, 我们的地面检查, 这样的工具, 将是一个多路域,, 用于 的地面。