Bayesian optimization (BO) is an efficient method to optimize expensive black-box functions. It has been generalized to scenarios where objective function evaluations return stochastic binary feedback, such as success/failure in a given test, or preference between different parameter settings. In many real-world situations, the objective function can be evaluated in controlled 'contexts' or 'environments' that directly influence the observations. For example, one could directly alter the 'difficulty' of the test that is used to evaluate a system's performance. With binary feedback, the context determines the information obtained from each observation. For example, if the test is too easy/hard, the system will always succeed/fail, yielding uninformative binary outputs. Here we combine ideas from Bayesian active learning and optimization to efficiently choose the best context and optimization parameter on each iteration. We demonstrate the performance of our algorithm and illustrate how it can be used to tackle a concrete application in visual psychophysics: efficiently improving patients' vision via corrective lenses, using psychophysics measurements.
翻译:Bayesian 优化 (BO) 是一种优化昂贵黑盒功能的有效方法。 它被广泛推广到客观功能评价返回随机二进制反馈的情景中, 如在特定测试中成功/失败或不同参数设置之间的偏好。 在许多现实世界中, 目标功能可以直接影响观测结果的受控“ extext” 或“ 环境” 来评估。 例如, 可以用二进制反馈来直接改变用于评估系统性能的测试的“ 难度 ” 。 使用二进制反馈, 环境决定了从每次观测中获得的信息。 例如, 如果测试过于简单/ 硬, 系统总是成功/ 失败, 产生不具有教益性的二进制输出。 在此, 我们将来自 Bayesian 积极学习和优化的想法结合起来, 以便高效地选择最佳的上下文, 优化每次循环的参数 。 我们演示我们的算法的性能, 并演示如何用它来处理视觉心理物理的具体应用: 通过矫正镜子, 有效地改善病人的视力。