Predictor-based algorithms have achieved remarkable performance in the Neural Architecture Search (NAS) tasks. However, these methods suffer from high computation costs, as training the performance predictor usually requires training and evaluating hundreds of architectures from scratch. Previous works along this line mainly focus on reducing the number of architectures required to fit the predictor. In this work, we tackle this challenge from a different perspective - improve search efficiency by cutting down the computation budget of architecture training. We propose NOn-uniform Successive Halving (NOSH), a hierarchical scheduling algorithm that terminates the training of underperforming architectures early to avoid wasting budget. To effectively leverage the non-uniform supervision signals produced by NOSH, we formulate predictor-based architecture search as learning to rank with pairwise comparisons. The resulting method - RANK-NOSH, reduces the search budget by ~5x while achieving competitive or even better performance than previous state-of-the-art predictor-based methods on various spaces and datasets.
翻译:在神经结构搜索(NAS)任务中,基于预测的算法取得了显著的成绩。然而,这些方法在计算成本方面成本很高,因为对性能预测者的培训通常需要从零开始培训和对数百个建筑进行评估。 沿这条线的以往工作主要侧重于减少与预测者相匹配所需的建筑数量。 在这项工作中,我们从不同的角度来应对这一挑战—— 通过削减建筑培训的计算预算来提高搜索效率。 我们建议采用不一致性的连续递减(NOSH), 一种等级排期算法, 提前结束对业绩不佳的建筑的培训以避免浪费预算。 为了有效地利用NOSH产生的非统一的监督信号, 我们设计基于预测或基于建筑的搜索作为学习与配对比较的排序。 由此产生的方法— RANK- NOSH 将搜索预算减少~ 5x,同时在各种空间和数据集上实现有竞争力或甚至更好的业绩。