Consider a data matrix $Y = [\mathbf{y}_1, \cdots, \mathbf{y}_N]$ of size $M \times N$, where the columns are independent observations from a random vector $\mathbf{y}$ with zero mean and population covariance $\Sigma$. Let $\mathbf{u}_i$ and $\mathbf{v}_j$ denote the left and right singular vectors of $Y$, respectively. This study investigates the eigenvector/singular vector overlaps $\langle {\mathbf{u}_i, D_1 \mathbf{u}_j} \rangle$, $\langle {\mathbf{v}_i, D_2 \mathbf{v}_j} \rangle$ and $\langle {\mathbf{u}_i, D_3 \mathbf{v}_j} \rangle$, where $D_k$ are general deterministic matrices with bounded operator norms. We establish the convergence in probability of these eigenvector overlaps toward their deterministic counterparts with explicit convergence rates, when the dimension $M$ scales proportionally with the sample size $N$. Building on these findings, we offer a more precise characterization of the loss for Ledoit and Wolf's nonlinear shrinkage estimators of the population covariance $\Sigma$.
翻译:暂无翻译