The amount of data has growing significance in exploring cutting-edge materials and a number of datasets have been generated either by hand or automated approaches. However, the materials science field struggles to effectively utilize the abundance of data, especially in applied disciplines where materials are evaluated based on device performance rather than their properties. This article presents a new natural language processing (NLP) task called structured information inference (SII) to address the complexities of information extraction at the device level in materials science. We accomplished this task by tuning GPT-3 on an existing perovskite solar cell FAIR (Findable, Accessible, Interoperable, Reusable) dataset with 91.8% F1-score and extended the dataset with data published since its release. The produced data is formatted and normalized, enabling its direct utilization as input in subsequent data analysis. This feature empowers materials scientists to develop models by selecting high-quality review articles within their domain. Additionally, we designed experiments to predict the electrical performance of solar cells and design materials or devices with targeted parameters using large language models (LLMs). Our results demonstrate comparable performance to traditional machine learning methods without feature selection, highlighting the potential of LLMs to acquire scientific knowledge and design new materials akin to materials scientists.
翻译:摘要:数据量在探索尖端材料方面越来越重要,许多数据集已经通过手工制作或自动化方法生成。然而,材料科学领域在有效利用丰富的数据方面存在困难,特别是在应用学科中,材料是基于器件性能而不是其特性进行评估。本文提出了一种新的自然语言处理(NLP)任务——结构信息推理(SII),以应对材料科学中器件层面信息提取的复杂性。我们通过在现有钙钛矿太阳能电池FAIR(Findable、Accessible、Interoperable、Reusable)数据集上调整GPT-3来完成此任务,取得了91.8%的F1分数,并通过发布自其发布以来的数据扩展了数据集。生成的数据格式化和规范化,使其可以直接用作后续数据分析的输入。此功能赋予材料科学家通过选择其领域内的高质量审核文章来开发模型的能力。此外,我们设计了实验来预测太阳能电池的电气性能,并使用大型语言模型(LLM)设计具有目标参数的材料或器件。我们的结果表明,在不进行特征选择的情况下,与传统机器学习方法相当的性能,突显了LLM获取科学知识和设计新材料的潜力。