Neural networks are suggested for learning a map from $d$-dimensional samples with any underlying dependence structure to multivariate uniformity in $d'$ dimensions. This map, termed DecoupleNet, is used for dependence model assessment and selection. If the data-generating dependence model was known, and if it was among the few analytically tractable ones, one such transformation for $d'=d$ is Rosenblatt's transform. DecoupleNets only require an available sample and are applicable to $d'<d$, in particular $d'=2$. This allows for simpler model assessment and selection without loss of information, both numerically and, because $d'=2$, graphically. Through simulation studies based on data from various copulas, the feasibility and validity of this novel approach is demonstrated. Applications to real world data illustrate its usefulness for model assessment and selection.
翻译:建议建立神经网络,从具有任何基本依赖结构的以美元为单位的维维样本到以美元为单位的多变量统一度的地图学习。这个称为DecupleNet的地图用于依赖模型的评估和选择。如果数据生成依赖模型已知,如果它是少数可分析可移植模型之一,美元=d美元的这种变换就是Rosenblatt的变换。DecupleNet仅需要可用样本,并适用于美元<d'd',特别是$d'=2$。这样就可以在不丢失信息的情况下进行更简单的模型评估和选择,数字上和因为美元=2$,图形上都是如此。通过基于各千叶木板数据进行的模拟研究,展示了这种新颖方法的可行性和有效性。应用真实世界数据来说明其对于模型评估和选择的实用性。