Multi-access edge computing (MEC) emerges as an essential part of the upcoming Fifth Generation (5G) and future beyond-5G mobile communication systems. It adds computational power towards the edge of cellular networks, much closer to energy-constrained user devices, and therewith allows the users to offload tasks to the edge computing nodes for low-latency applications with very-limited battery consumption. However, due to the high dynamics of user demand and server load, task congestion may occur at the edge nodes resulting in long queuing delay. Such delays can significantly degrade the quality of experience (QoE) of some latency-sensitive applications, raise the risk of service outage, and cannot be efficiently resolved by conventional queue management solutions. In this article, we study a latency-outage critical scenario, where users intend to limit the risk of latency outage. We propose an impatience-based queuing strategy for such users to intelligently choose between MEC offloading and local computation, allowing them to rationally renege from the task queue. The proposed approach is demonstrated by numerical simulations to be efficient for generic service model, when a perfect queue status information is available. For the practical case where the users obtain only imperfect queue status information, we design an optimal online learning strategy to enable its application in Poisson service scenarios.


翻译:多接入边缘计算(MEC)是即将到来的第五代(5G)和未来5G移动通信系统的一个重要部分,它增加了蜂窝网络边缘的计算能力,更接近于能源紧缺的用户设备,从而使用户能够将任务卸到低纬度应用的边缘计算节点,而电池消耗量则非常有限。然而,由于用户需求和服务器负荷的动态性能很高,任务拥堵可能发生在边缘节点,导致长期排队延迟。这种延迟会大大降低一些对延时敏感应用的经验质量(QoE),增加服务中断的风险,并且无法通过常规的排队管理解决方案有效解决。在本篇文章中,我们研究一个延时退出临界点的关键情景,用户打算限制延时耗耗耗的风险。我们提议基于不满足性的排队列战略,让这些用户在MEC卸载和本地计算之间作出明智的选择,使他们能够理性地脱离任务排队列。我们提议的方法是通过数字模拟来证明,只有当我们获得最完善的版本服务应用时,才能有效进行在线排序。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员