Computing solutions to partial differential equations using the fast Fourier transform can lead to unwanted oscillatory behavior. Due to the periodic nature of the discrete Fourier transform, waves that leave the computational domain on one side reappear on the other and for dispersive equations these are typically high-velocity, high-frequency waves. However, the fast Fourier transform is a very efficient numerical tool and it is important to find a way to damp these oscillations so that this transform can still be used. In this paper, we accurately model solutions to four nonlinear partial differential equations on an infinite domain by considering a finite interval and implementing two damping methods outside of that interval: one that solves the heat equation and one that simulates rapid exponential decay. Heat equation-based damping is best suited for small-amplitude, high-frequency oscillations while exponential decay is used to damp traveling waves and high-amplitude oscillations. We demonstrate significant improvements in the runtime of well-studied numerical methods when adding in the damping method.
翻译:使用快速 Fourier 变换的局部差异方程式的计算机化溶液可能会导致不必要的扰动行为。 由于离散 Fourier 变换的周期性, 将计算域留在一边的波浪会重新出现在另一边, 分散式方程式的波浪通常都是高速、 高频波。 然而, Fourier 快速变换是一个非常有效的数字工具, 重要的是要找到一种方法来淹没这些振荡, 以便这种变换仍能被使用。 在本文中, 我们通过考虑一个有限的间距, 并在这个间距以外实施两种倾斜方法, 来精确地模拟四种无线部分差异方程式的模型化解决办法: 一种能解热方程式, 一种能模拟快速加速加速衰变的方程式。 基于 Heat 方程式的弯曲最适合小型增压、 高频振荡, 同时使用指数衰变来遮盖旅行波和高振荡。 在添加倾角法时, 我们展示了经过良好研究的数字方法的运行时间的重大改进。