We consider the fundamental problem of allocating a set of indivisible goods among strategic agents with additive valuation functions. It is well known that, in the absence of monetary transfers, Pareto efficient and truthful rules are dictatorial, while there is no deterministic truthful mechanism that allocates all items and achieves envy-freeness up to one item (EF1), even for the case of two agents. In this paper, we investigate the interplay of fairness and efficiency under a relaxation of truthfulness called non-obvious manipulability (NOM), recently proposed by Troyan and Morrill. We show that this relaxation allows us to bypass the aforementioned negative results in a very strong sense. Specifically, we prove that there are deterministic and EF1 algorithms that are not obviously manipulable, and the algorithm that maximizes utilitarian social welfare (the sum of agents' utilities), which is Pareto efficient but not dictatorial, is not obviously manipulable for $n \geq 3$ agents (but obviously manipulable for $n=2$ agents). At the same time, maximizing the egalitarian social welfare (the minimum of agents' utilities) or the Nash social welfare (the product of agents' utilities) is obviously manipulable for any number of agents and items. Our main result is an approximation preserving black-box reduction from the problem of designing EF1 and NOM mechanisms to the problem of designing EF1 algorithms. En route, we prove an interesting structural result about EF1 allocations, as well as new "best-of-both-worlds" results (for the problem without incentives), that might be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
31+阅读 · 2021年6月30日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员