We consider the setting of vector valued non-linear dynamical systems $X_{t+1} = \phi(A^* X_t) + \eta_t$, where $\eta_t$ is unbiased noise and $\phi : \mathbb{R} \to \mathbb{R}$ is a known link function that satisfies certain {\em expansivity property}. The goal is to learn $A^*$ from a single trajectory $X_1,\cdots,X_T$ of {\em dependent or correlated} samples. While the problem is well-studied in the linear case, where $\phi$ is identity, with optimal error rates even for non-mixing systems, existing results in the non-linear case hold only for mixing systems. In this work, we improve existing results for learning nonlinear systems in a number of ways: a) we provide the first offline algorithm that can learn non-linear dynamical systems without the mixing assumption, b) we significantly improve upon the sample complexity of existing results for mixing systems, c) in the much harder one-pass, streaming setting we study a SGD with Reverse Experience Replay ($\mathsf{SGD-RER}$) method, and demonstrate that for mixing systems, it achieves the same sample complexity as our offline algorithm, d) we justify the expansivity assumption by showing that for the popular ReLU link function -- a non-expansive but easy to learn link function with i.i.d. samples -- any method would require exponentially many samples (with respect to dimension of $X_t$) from the dynamical system. We validate our results via. simulations and demonstrate that a naive application of SGD can be highly sub-optimal. Indeed, our work demonstrates that for correlated data, specialized methods designed for the dependency structure in data can significantly outperform standard SGD based methods.


翻译:我们认为设定矢量值的非线性动态系统 $X+1} =\phi(A ⁇ X_t) +\eta_t$ +\eta_t$, $\eta_t$是公正的噪音, $phi:\mathbb{R}\to\mathbb{R} 到\mathbb{R} 美元是一个已知的链接功能, 满足某些 {em 扩展属性} 。 目标是从单一轨道 $X_ 1,\cdots, X_T$ =美元, =美元依赖或关联} 样本 =\phi(A_xxxxx) +\\\\ a\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
92+阅读 · 2020年10月22日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Sampling Permutations for Shapley Value Estimation
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月2日
VIP会员
相关VIP内容
相关资讯
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员