We present Ego-Only, the first training pipeline that enables state-of-the-art action detection on egocentric (first-person) videos without any form of exocentric (third-person) pretraining. Previous approaches found that egocentric models cannot be trained effectively from scratch and that exocentric representations transfer well to first-person videos. In this paper we revisit these two observations. Motivated by the large content and appearance gap separating the two domains, we propose a strategy that enables effective training of egocentric models without exocentric pretraining. Our Ego-Only pipeline is simple. It trains the video representation with a masked autoencoder finetuned for temporal segmentation. The learned features are then fed to an off-the-shelf temporal action localization method to detect actions. We evaluate our approach on two established egocentric video datasets: Ego4D and EPIC-Kitchens-100. On Ego4D, our Ego-Only is on-par with exocentric pretraining methods that use an order of magnitude more labels. On EPIC-Kitchens-100, our Ego-Only even outperforms exocentric pretraining (by 2.1% on verbs and by 1.8% on nouns), setting a new state-of-the-art.


翻译:我们提出了第一个培训管道Ego-Only。 我们的Ego-Only管道很简单。 它用一种掩码自动电解器对视频代表进行训练,对时间分割进行微调调整。 学到的功能随后被反馈到一种现成的时间行动定位方法中以探测行动。 我们评估了我们对于两个既定的以自我为中心的视频数据集: Ego4D 和 EIPIC-Kitchens-100。 在 Ego4D 上,我们的Ego-Only使用一种外向型前导法进行升级,这种前向型前导法使用更高级的标签。 在 EPIC-Kitchens-100 上, 我们的Ego-Only使用一种甚至更高级的外向前导法。 在EPIC-Kitchens-100 之前, 我们的Ego-Only-stal-strain 上, 我们的EGIK-B-C-I-C-S-C-IL-S-S-S-S-IL-S-B-S-Agental-S-B-S-B-S-SLAD-SB-B-B-S-INS-S-S-S-B-S-S-B-B-S-S-B-S-S-B-B-SB-B-S-S-S-S-S-S-S-B-S-S-S-S-S-S-S-B-S-S-S-S-S-B-B-B-B-B-B-B-B-B-B-S-S-S-B-S-S-B-B-S-S-S-S-S-S-S-S-B-B-B-B-B-B-B-B-S-S-B-S-S-S-S-B-B-B-B-B-B-B-S-S-B-B-B-B-B-B-B-B-B-B-S-S-S-S-S-S-S-S-S-B-B-B-B-B-S-B-B-B-B-B-S-B

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年6月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员