Irregular time series data are prevalent in the real world and are challenging to model with a simple recurrent neural network (RNN). Hence, a model that combines the use of ordinary differential equations (ODE) and RNN was proposed (ODE-RNN) to model irregular time series with higher accuracy, but it suffers from high computational costs. In this paper, we propose an improvement in the runtime on ODE-RNNs by using a different efficient batching strategy. Our experiments show that the new models reduce the runtime of ODE-RNN significantly ranging from 2 times up to 49 times depending on the irregularity of the data while maintaining comparable accuracy. Hence, our model can scale favorably for modeling larger irregular data sets.
翻译:非正常时间序列数据在现实世界中很普遍,而且很难用简单的经常性神经网络(RNN)来模拟。因此,建议采用一种模式,将普通差分方程(ODE)和RNN(ODE-RNN)相结合,以更精确的方式模拟非正常时间序列,但费用高昂。在本文中,我们建议采用不同的高效分批战略来改进ODE-RNN的运行时间。我们的实验表明,根据数据的不规则性,新模式大大缩短了ODE-RN的运行时间,从2倍到49倍不等,同时保持可比较的准确性。因此,我们的模型可以有利于模拟更大的非正常数据集。