Twenty years after the discovery of the F5 algorithm, Gr\"obner bases with signatures are still challenging to understand and to adapt to different settings. This contrasts with Buchberger's algorithm, which we can bend in many directions keeping correctness and termination obvious. I propose an axiomatic approach to Gr\"obner bases with signatures with the purpose of uncoupling the theory and the algorithms, and giving general results applicable in many different settings (e.g. Gr\"obner for submodules, F4-style reduction, noncommutative rings, non-Noetherian settings, etc.).
翻译:暂无翻译