Recent years have witnessed impressive advances in challenging multi-hop QA tasks. However, these QA models may fail when faced with some disturbance in the input text and their interpretability for conducting multi-hop reasoning remains uncertain. Previous adversarial attack works usually edit the whole question sentence, which has limited effect on testing the entity-based multi-hop inference ability. In this paper, we propose a multi-hop reasoning chain based adversarial attack method. We formulate the multi-hop reasoning chains starting from the query entity to the answer entity in the constructed graph, which allows us to align the question to each reasoning hop and thus attack any hop. We categorize the questions into different reasoning types and adversarially modify part of the question corresponding to the selected reasoning hop to generate the distracting sentence. We test our adversarial scheme on three QA models on HotpotQA dataset. The results demonstrate significant performance reduction on both answer and supporting facts prediction, verifying the effectiveness of our reasoning chain based attack method for multi-hop reasoning models and the vulnerability of them. Our adversarial re-training further improves the performance and robustness of these models.


翻译:近些年来,在具有挑战性的多op QA任务方面取得了令人印象深刻的进展。然而,这些QA模式在遇到输入文本的某些干扰时可能会失败,而对于多op 推理的可解释性仍然不确定。先前的对抗性攻击工作通常编辑整个问题句,这对测试基于实体的多op 多op 推理能力影响有限。在本文中,我们提议了一个基于多Hop 推理链的对抗性攻击方法。我们从查询实体到构建的图表中的答复实体,设计了多op 推理链推理链,使我们能够将问题与每一次推理抽调相匹配,从而攻击任何跳动。我们将问题分为不同的推理类型,对准性地修改与选定推理跳动生成引力句相应的部分问题。我们用三个基于HotpotQA数据集的QA模型测试我们的对抗性攻击性计划。结果显示,在回答和支持事实预测两方面都显著地降低了性能,核查我们基于逻辑攻击方法的多op 推理理学模型的有效性及其脆弱性。我们的对抗性再培训进一步提高了这些模型的性能和稳健性。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | CFO: Conditional Focused Neural Question Answering
开放知识图谱
6+阅读 · 2017年12月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
VIP会员
相关VIP内容
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | CFO: Conditional Focused Neural Question Answering
开放知识图谱
6+阅读 · 2017年12月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员