To fight climate change and accommodate the increasing population, global crop production has to be strengthened. To achieve the "sustainable intensification" of agriculture, transforming it from carbon emitter to carbon sink is a priority, and understanding the environmental impact of agricultural management practices is a fundamental prerequisite to that. At the same time, the global agricultural landscape is deeply heterogeneous, with differences in climate, soil, and land use inducing variations in how agricultural systems respond to farmer actions. The "personalization" of sustainable agriculture with the provision of locally adapted management advice is thus a necessary condition for the efficient uplift of green metrics, and an integral development in imminent policies. Here, we formulate personalized sustainable agriculture as a Conditional Average Treatment Effect estimation task and use Causal Machine Learning for tackling it. Leveraging climate data, land use information and employing Double Machine Learning, we estimate the heterogeneous effect of sustainable practices on the field-level Soil Organic Carbon content in Lithuania. We thus provide a data-driven perspective for targeting sustainable practices and effectively expanding the global carbon sink.
翻译:为了应对气候变化并适应日益增长的人口,必须加强全球作物生产。为了实现农业的“可持续集约化 ”, 将农业从碳排放到碳吸收汇的“可持续集约化”是一个优先事项,了解农业管理做法对环境的影响是这一方面的一个基本先决条件。 与此同时,全球农业景观差异很大,气候、土壤和土地利用的差异导致农业系统如何应对农民行动的变化。因此,通过提供适合当地情况的管理咨询意见,可持续农业的“个性化”是有效提升绿色指标和在即将出台的政策中实现整体发展的必要条件。在这里,我们把个性化的可持续农业作为有条件平均治疗效果估计任务,并使用业余机械学习来解决这一问题。利用气候数据、土地使用信息和双机学习,我们估计可持续做法对立陶宛实地土壤有机碳含量的不同影响。因此,我们从数据角度出发,确定可持续做法的目标,有效扩大全球碳吸收汇。