The $d$-independence number of a graph $G$ is the largest possible size of an independent set $I$ in $G$ where each vertex of $I$ has degree at least $d$ in $G$. Upper bounds for the $d$-independence number in planar graphs are well-known for $d=3,4,5$, and can in fact be matched with constructions that actually have minimum degree $d$. In this paper, we explore the same questions for 1-planar graphs, i.e., graphs that can be drawn in the plane with at most one crossing per edge. We give upper bounds for the $d$-independence number for all $d$. Then we give constructions that match the upper bound, and (for small $d$) also have minimum degree $d$.
翻译:暂无翻译