In recent years, large pre-trained Transformer-based language models have led to dramatic improvements in many natural language understanding tasks. To train these models with increasing sizes, many neural network practitioners attempt to increase the batch sizes in order to leverage multiple GPUs to improve training speed. However, increasing the batch size often makes the optimization more difficult, leading to slow convergence or poor generalization that can require orders of magnitude more training time to achieve the same model quality. In this paper, we explore the steepness of the loss landscape of large-batch optimization for adapting pre-trained Transformer-based language models to domain-specific tasks and find that it tends to be highly complex and irregular, posing challenges to generalization on downstream tasks. To tackle this challenge, we propose ScaLA, a novel and efficient method to accelerate the adaptation speed of pre-trained transformer networks. Different from prior methods, we take a sequential game-theoretic approach by adding lightweight adversarial noise into large-batch optimization, which significantly improves adaptation speed while preserving model generalization. Experiment results show that ScaLA attains 2.7--9.8$\times$ adaptation speedups over the baseline for GLUE on BERT-base and RoBERTa-large, while achieving comparable and sometimes higher accuracy than the state-of-the-art large-batch optimization methods. Finally, we also address the theoretical aspect of large-batch optimization with adversarial noise and provide a theoretical convergence rate analysis for ScaLA using techniques for analyzing non-convex saddle-point problems.


翻译:近年来,大量培训前的变异语言模型导致许多自然语言理解任务的大幅改进。为了对这些模型进行规模越来越大的培训,许多神经网络从业者试图增加批量规模,以便利用多个GPU来提高培训速度。然而,批量规模的扩大往往使优化更加困难,导致趋同速度缓慢或概括性差,从而需要数量级级更高的培训时间才能达到同样的模式质量。在本文件中,我们探讨了大批量优化的流失场景,以调整预先培训的变异语言模型,使之适应特定领域的任务,发现这些模型往往非常复杂和不正常,对下游任务的概括化提出了挑战。为了应对这一挑战,我们建议ScaLA,这是加速预先培训变异网络适应速度的一种新颖而有效的方法。不同于以往的方法,我们采用顺序游戏理论方法,将轻量的对抗噪音添加到大批量的优化中,从而大大提高了适应速度,同时保持了模型的通用。实验结果表明,ScaLA达到2.7-9.8美元的非常规性,对下游任务提出了挑战。我们建议ScaLA,这是加快调整速度速度速度速度速度的大规模基准,而有时使用比GIRB-BA-BA-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-S-B-S-S-S-S-S-S-S-S-S-S-S-S-B-S-S-S-S-S-S-S-S-S-S-B-B-B-B-B-B-S-B-S-S-S-S-S-B-B-B-B-B-B-S-S-B-S-B-S-S-S-B-B-B-B-B-S-S-S-S-S-S-S-S-B-B-B-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-B-B-B-B-B-B-S-S-

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
27+阅读 · 2021年11月11日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员