Numerical weather prediction models rely on parameterizations for subgrid-scale processes, e.g., for cloud microphysics. These parameterizations are a well-known source of uncertainty in weather forecasts that can be quantified via algorithmic differentiation, which computes the sensitivities of atmospheric variables to changes in model parameters. It is particularly interesting to use sensitivities to analyze the validity of physical assumptions on which microphysical parameterizations in the numerical model source code are based. In this article, we consider the use case of strongly ascending trajectories, so-called warm conveyor belt trajectories, known to have a significant impact on intense surface precipitation rates in extratropical cyclones. We present visual analytics solutions to analyze the sensitivities of rain mass density to large numbers of model parameters along such trajectories. We propose an interactive visual interface that enables a) a comparative analysis of the temporal development of parameter sensitivities on a set of trajectories, b) an effective comparison of the distributions of selected sensitivities at a single location on each trajectory, and c) an assessment of the spatio-temporal relationships between parameter sensitivities and the shape of trajectories. We demonstrate how our approach enables atmospheric scientists to interactively analyze the uncertainty in the microphysical parameterizations, and along the trajectories, with respect to selected state variables. We apply our approach to the analysis of convective trajectories within the extratropical cyclone "Vladiana", which occurred between 22-25 September 2016 over the North Atlantic.


翻译:数字天气预测模型依赖于亚电网规模过程的参数化,例如云微物理学。这些参数化是天气预报中众所周知的不确定性的来源,可以通过算法区分量化,计算大气变量对模型参数变化的敏感度。特别有趣的是,利用敏感度分析数字模型源代码中微物理参数化所依据的物理假设的有效性。在本篇文章中,我们考虑使用强烈上升轨迹,即所谓的热传送带轨迹,已知对极端热带气旋中地表降速率有重大影响。我们提出视觉分析解决方案,分析降雨质量密度的敏感度与模型参数变化的变化。我们提议一个互动视觉界面,以便能够对一组轨迹的微物理参数敏感度的时间发展进行比较分析。b)有效地比较每个轨迹单一位置选定敏感度的分布,以及(c)评估台式阵列海流降降降降速速速速速率速率的强烈率。我们提出的视觉分析解决方案,用以分析降雨量质量密度的敏感度,以及我们所选择的大气物理变量在轨迹中如何在轨迹学中进行交互式分析。我们所选择的精确度分析。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
0+阅读 · 2022年6月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员