In this paper, we propose a Joint Semantic Transfer Network (JSTN) towards effective intrusion detection for large-scale scarcely labelled IoT domain. As a multi-source heterogeneous domain adaptation (MS-HDA) method, the JSTN integrates a knowledge rich network intrusion (NI) domain and another small-scale IoT intrusion (II) domain as source domains, and preserves intrinsic semantic properties to assist target II domain intrusion detection. The JSTN jointly transfers the following three semantics to learn a domain-invariant and discriminative feature representation. The scenario semantic endows source NI and II domain with characteristics from each other to ease the knowledge transfer process via a confused domain discriminator and categorical distribution knowledge preservation. It also reduces the source-target discrepancy to make the shared feature space domain-invariant. Meanwhile, the weighted implicit semantic transfer boosts discriminability via a fine-grained knowledge preservation, which transfers the source categorical distribution to the target domain. The source-target divergence guides the importance weighting during knowledge preservation to reflect the degree of knowledge learning. Additionally, the hierarchical explicit semantic alignment performs centroid-level and representative-level alignment with the help of a geometric similarity-aware pseudo-label refiner, which exploits the value of unlabelled target II domain and explicitly aligns feature representations from a global and local perspective in a concentrated manner. Comprehensive experiments on various tasks verify the superiority of the JSTN against state-of-the-art comparing methods, on average a 10.3% of accuracy boost is achieved. The statistical soundness of each constituting component and the computational efficiency are also verified.
翻译:在本文中,我们提议建立一个联合语义传输网络(JSTN),以有效探测大规模标记为稀有的 IOT 域域的入侵。作为一种多源的多元域适应(MS-HDA)方法,JSTN将知识丰富的网络入侵(NI)域和另一个小规模的 IOT 侵入(II) 域作为源域,并保护内在语义属性,以协助目标二域侵入探测。JSTN联合将以下三个语义转换为学习一个域级偏差和歧视性性特征表达。假设语义内涵源 NI和II 域域,具有来自彼此的特性,以便通过模糊的域内分域区分和绝对分布知识转换(MS-HDA) 域域适应(MS-HDA) 域域适应(MS-HDA) 域域域适应(MS-HDA) 域适应(MS-HDA) 域域域适应(M) 方法。同时,加权内隐含语义的语义传输功能转移会通过精度知识保存源源源的源分流分布分布分布分布,并明确定位校正对等域的校正值校正的校正值校正的校正校正。此外, 校正的校正校正的校正校正的校正的校正。此外校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正,也是一种的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正。