Fuzz Testing techniques are the state of the art in software testing for security issues nowadays. Their great effectiveness attracted the attention of researchers and hackers and involved them in developing a lot of new techniques to improve Fuzz Testing. The evaluation and the cross-comparison of these techniques is an almost open problem. In this paper, we propose a human-driven approach to this problem based on information visualization. We developed a prototype upon the AFL++ fuzzing framework, FuzzSplore, that an analyst can use to get useful insights about different fuzzing configurations applied to a specific target in order to choose or tune the best technique during a fuzzing campaign.
翻译:模糊测试技术是当今安全问题软件测试的最先进技术。 它们的巨大效力吸引了研究人员和黑客的注意力,让他们参与开发许多新技术来改进模糊测试。 这些技术的评估和交叉比较几乎是一个尚未解决的问题。 在本文中,我们提出基于信息可视化的由人驱动的方法来解决这个问题。 我们在AFL+ 模糊框架( FuzzSplore)上开发了一个原型,分析员可以利用这个原型来获得关于应用于特定目标的不同模糊配置的有用洞察力,以便在模糊运动中选择或调整最佳技术。