Intelligent diagnosis method based on data-driven and deep learning is an attractive and meaningful field in recent years. However, in practical application scenarios, the imbalance of time-series fault is an urgent problem to be solved. This paper proposes a novel deep metric learning model, where imbalanced fault data and a quadruplet data pair design manner are considered. Based on such data pair, a quadruplet loss function which takes into account the inter-class distance and the intra-class data distribution are proposed. This quadruplet loss pays special attention to imbalanced sample pair. The reasonable combination of quadruplet loss and softmax loss function can reduce the impact of imbalance. Experiment results on two open-source datasets show that the proposed method can effectively and robustly improve the performance of imbalanced fault diagnosis.


翻译:近年来,基于数据驱动和深层次学习的智能诊断方法是一个有吸引力和有意义的领域,但在实际应用假设中,时间序列缺陷的不平衡是一个迫切需要解决的问题。本文件提出了一个新的深层次的衡量学习模式,其中考虑了不平衡的缺陷数据和四重数据对配设计方式。根据这些数据对,提出了考虑到阶级间距离和类内数据分布的四重损失功能。这一四重损失特别关注不平衡的样本对口。四重损失和软体轴损失功能的合理结合可以减少不平衡的影响。两个开放源数据集的实验结果表明,拟议的方法能够有效和有力地改善不平衡的缺陷诊断的性能。

0
下载
关闭预览

相关内容

度量学习的目的为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。 度量学习通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。
专知会员服务
28+阅读 · 2021年8月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
115+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Cross-Modal & Metric Learning 跨模态检索专题-2
已删除
将门创投
11+阅读 · 2019年8月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Cross-Modal & Metric Learning 跨模态检索专题-2
已删除
将门创投
11+阅读 · 2019年8月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员