A cut sparsifier is a reweighted subgraph that maintains the weights of the cuts of the original graph up to a multiplicative factor of $(1\pm\epsilon)$. This paper considers computing cut sparsifiers of weighted graphs of size $O(n\log (n)/\epsilon^2)$. Our algorithm computes such a sparsifier in time $O(m\cdot\min(\alpha(n)\log(m/n),\log (n)))$, both for graphs with polynomially bounded and unbounded integer weights, where $\alpha(\cdot)$ is the functional inverse of Ackermann's function. This improves upon the state of the art by Bencz\'ur and Karger (SICOMP 2015), which takes $O(m\log^2 (n))$ time. For unbounded weights, this directly gives the best known result for cut sparsification. Together with preprocessing by an algorithm of Fung et al. (SICOMP 2019), this also gives the best known result for polynomially-weighted graphs. Consequently, this implies the fastest approximate min-cut algorithm, both for graphs with polynomial and unbounded weights. In particular, we show that it is possible to adapt the state of the art algorithm of Fung et al. for unweighted graphs to weighted graphs, by letting the partial maximum spanning forest (MSF) packing take the place of the Nagamochi-Ibaraki (NI) forest packing. MSF packings have previously been used by Abraham at al. (FOCS 2016) in the dynamic setting, and are defined as follows: an $M$-partial MSF packing of $G$ is a set $\mathcal{F}=\{F_1, \dots, F_M\}$, where $F_i$ is a maximum spanning forest in $G\setminus \bigcup_{j=1}^{i-1}F_j$. Our method for computing (a sufficient estimation of) the MSF packing is the bottleneck in the running time of our sparsification algorithm.


翻译:剪切的锅炉是一个重新加权的子集, 将原始图表的削减量维持在( 1\ pmidicial_ epsilon) $( 1\ pmidicial) 的倍数性系数上。 本文考虑的是大小加权图形的计算切开的锅炉 $O( log (n) /\ epsilon\ 2) $。 我们的算法在时间( mm\ cdort\ m) min( m)\ flog (n) 美元), 将原始图表的削减量维持在( politial- mail ) 中, 以多位数( $\ pmidicial_ commacial ) 来保持最高值 。 与前数( SICOMP 2019 ) 相比, 最高级的Fialcial- commocial- mail macial 的算法也是最起码的。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年6月30日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
All the World's a (Hyper)Graph: A Data Drama
Arxiv
0+阅读 · 2022年6月16日
Arxiv
0+阅读 · 2022年6月14日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员