This paper studies the task of inpainting man-made scenes. It is very challenging due to the difficulty in preserving the visual patterns of images, such as edges, lines, and junctions. Especially, most previous works are failed to restore the object/building structures for images of man-made scenes. To this end, this paper proposes learning a Sketch Tensor (ST) space for inpainting man-made scenes. Such a space is learned to restore the edges, lines, and junctions in images, and thus makes reliable predictions of the holistic image structures. To facilitate the structure refinement, we propose a Multi-scale Sketch Tensor inpainting (MST) network, with a novel encoder-decoder structure. The encoder extracts lines and edges from the input images to project them into an ST space. From this space, the decoder is learned to restore the input images. Extensive experiments validate the efficacy of our model. Furthermore, our model can also achieve competitive performance in inpainting general nature images over the competitors.
翻译:本文研究了绘制人造场景的任务。 由于难以保存图像的视觉图案, 如边缘、 线条和交叉点等, 它非常具有挑战性。 特别是, 大多数先前的作品都未能恢复人造场景图像的天体/ 建筑结构 。 为此, 本文建议学习一个用于绘制人造场图案的 Sletch Tensor (ST) 空间 。 这种空间可以恢复图像的边缘、 线条和交叉点, 从而对整体图像结构做出可靠的预测 。 为了方便结构的完善, 我们建议建立一个多尺度的 Sletch Tensor 油漆( MST) 网络, 并配有一个新颖的编码器解码器结构 。 编码器从输入图像中提取线和边缘, 将其投射到ST 空间 。 从这个空间, 解码器可以学习恢复输入图像 。 广泛的实验可以验证我们模型的功效 。 此外, 我们的模型还可以在绘制一般自然图像上取得竞争性的功能 。