In this paper, we present a new explainability formalism designed to shed light on how each input variable of a test set impacts the predictions of machine learning models. Hence, we propose a group explainability formalism for trained machine learning decision rules, based on their response to the variability of the input variables distribution. In order to emphasize the impact of each input variable, this formalism uses an information theory framework that quantifies the influence of all input-output observations based on entropic projections. This is thus the first unified and model agnostic formalism enabling data scientists to interpret the dependence between the input variables, their impact on the prediction errors, and their influence on the output predictions. Convergence rates of the entropic projections are provided in the large sample case. Most importantly, we prove that computing an explanation in our framework has a low algorithmic complexity, making it scalable to real-life large datasets. We illustrate our strategy by explaining complex decision rules learned by using XGBoost, Random Forest or Deep Neural Network classifiers on various datasets such as Adult Income, MNIST, CelebA, Boston Housing, Iris, as well as synthetic ones. We finally make clear its differences with the explainability strategies LIME and SHAP, that are based on single observations. Results can be reproduced by using the freely distributed Python toolbox https://gems-ai.aniti.fr/.


翻译:在本文中,我们提出了一种新的解释性形式主义,旨在阐明测试组的每个输入变量如何影响机器学习模型的预测。因此,我们建议根据对输入变量分布的变异性的反应,为经过培训的机器学习决策规则提出一个集体解释性形式主义。为了强调每个输入变量的影响,这种形式主义使用一个信息理论框架,以量化基于对映射预测的所有输入-输出观测的影响。因此,这是第一个统一和模型式的随机化正式主义,使数据科学家能够解释输入变量之间的依赖性、它们对预测错误的影响以及它们对产出预测的影响。在大样本中提供了经过培训的机器学习决策规则的一致率。最重要的是,我们证明我们框架中计算的解释是低算法复杂性,能够对真实存在的大型数据集进行缩放。我们通过解释复杂的决策规则,通过使用XGBoost、随机森林或深神经网络分类,使数据科学家能够解释各种数据集(如成人收入、MNIST、CelibA、波士顿-MA、I自由输出战略)的一致率率率比率,最后可以解释其单一结果的复制。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月1日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员