Randomly perturbing networks during the training process is a commonly used approach to improving generalization performance. In this paper, we present a theoretical study of one particular way of random perturbation, which corresponds to injecting artificial noise to the training data. We provide a precise asymptotic characterization of the training and generalization errors of such randomly perturbed learning problems on a random feature model. Our analysis shows that Gaussian noise injection in the training process is equivalent to introducing a weighted ridge regularization, when the number of noise injections tends to infinity. The explicit form of the regularization is also given. Numerical results corroborate our asymptotic predictions, showing that they are accurate even in moderate problem dimensions. Our theoretical predictions are based on a new correlated Gaussian equivalence conjecture that generalizes recent results in the study of random feature models.


翻译:培训过程中的随机扰动网络是一种常用的方法,用来改进一般化绩效。本文介绍对随机扰动的一种特定方式的理论研究,这与培训数据中注入人工噪音相对应。我们在随机特征模型中对随机扰动学习问题的培训和一般化错误作了精确的简单描述。我们的分析表明,在培训过程中,高山噪音注入相当于引入加权脊固定化,因为噪音注入的数量往往具有无限性。还给出了规范化的明确形式。数字结果证实了我们的无症状预测,表明即使在中度问题方面,这些预测也是准确的。我们的理论预测基于一个新的相互关联的高山等值等值预测,该预测概括了随机特征模型研究的最新结果。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员