Non-autoregressive (NAR) neural machine translation is usually done via knowledge distillation from an autoregressive (AR) model. Under this framework, we leverage large monolingual corpora to improve the NAR model's performance, with the goal of transferring the AR model's generalization ability while preventing overfitting. On top of a strong NAR baseline, our experimental results on the WMT14 En-De and WMT16 En-Ro news translation tasks confirm that monolingual data augmentation consistently improves the performance of the NAR model to approach the teacher AR model's performance, yields comparable or better results than the best non-iterative NAR methods in the literature and helps reduce overfitting in the training process.
翻译:非倾斜神经机器翻译通常是通过从自动递减模式中提取知识来完成的。 在这个框架下,我们利用大型单一语言公司来改进NAR模型的性能,目的是转让AR模型的概括性能力,同时防止过度装配。 除了强大的NAR基线外,我们在WMT14 En-De和WMT16 En-Ro新闻翻译任务方面的实验结果证实,单语数据增加不断改进NAR模型的性能,以接近教师AR模型的性能,产生比文献中最佳的非泰式NAR方法的可比或更好的效果,并有助于减少培训过程中的过分匹配。