Recent studies show that auto-encoder based approaches successfully perform language generation, smooth sentence interpolation, and style transfer over unseen attributes using unlabelled datasets in a zero-shot manner. The latent space geometry of such models is organised well enough to perform on datasets where the style is "coarse-grained" i.e. a small fraction of words alone in a sentence are enough to determine the overall style label. A recent study uses a discrete token-based perturbation approach to map "similar" sentences ("similar" defined by low Levenshtein distance/ high word overlap) close by in latent space. This definition of "similarity" does not look into the underlying nuances of the constituent words while mapping latent space neighbourhoods and therefore fails to recognise sentences with different style-based semantics while mapping latent neighbourhoods. We introduce EPAAEs (Embedding Perturbed Adversarial AutoEncoders) which completes this perturbation model, by adding a finely adjustable noise component on the continuous embeddings space. We empirically show that this (a) produces a better organised latent space that clusters stylistically similar sentences together, (b) performs best on a diverse set of text style transfer tasks than similar denoising-inspired baselines, and (c) is capable of fine-grained control of Style Transfer strength. We also extend the text style transfer tasks to NLI datasets and show that these more complex definitions of style are learned best by EPAAE. To the best of our knowledge, extending style transfer to NLI tasks has not been explored before.
翻译:最近的研究显示,基于自动编码器的方法成功地以零发方式使用未贴标签的数据集进行语言生成、平稳句子内插和样式转换,使用未贴标签的数据集,对看不见的属性成功进行语言生成、平稳调试和样式转换。这些模型的潜伏空间几何结构良好,足以在“粗略区分”的样式下运行数据集,也就是说,单用一句中的一小部分单字就足以确定总体样式标签。最近的一项研究使用一种离散的代号式扰动方法,绘制“相似的”句子(由低 Leveshtein 距离/ 高单词重叠定义的“ 相似” ), 在隐蔽空间中绘制“ 相似的” 句子。 这个“ 相似性” 的定义在绘制隐藏空间区区区区区区区区区区区区区区区区区区区区区区区区区区区区块时, 在绘制“ 相似的“ 相似” 相近” 的“ 相近” 调调音频部分时, 在连续嵌空间空间中添加一个精细调的“ ” 。 我们实验性地显示, 更精度的“ 更精细地展示地展示了“ 的“ 样” 的“ 样” 的“ 的“ 的“ ” 的“ ” 的“ 的“ ” 的“ 的“ ” ” 的“ 的“ ” ” ”, 的“, 的“ 结构式“ ” ” 的“ 等式” 的“ 等式” 等式” 等式“ 等式” 等式“ 等式“ 等式“ 等式“ 的“ ” 等式“ ” ” ” 等式“ ” ” ” ”, ” ” 的“, 等式“ ” 等式“ 等式“ 等式“ 等式“ 等式“ ” 等式” 等式“ 等式” 等式“ 等式” 等式” 等式“ ” 等式“ ” ” ” ” 等式“ 等式“ 等式“