In this paper, we describe and present the first dataset of source code plagiarism specifically aimed at contest plagiarism. The dataset contains 251 pairs of plagiarized solutions of competitive programming tasks in Java, as well as 660 non-plagiarized ones, however, the described approach can be used to extend the dataset in the future. Importantly, each pair comes in two versions: (a) "raw" and (b) with participants' repeated template code removed, allowing for evaluating tools in different settings. We used the collected dataset to compare the available source code plagiarism detection tools, including state-of-the-art ones, specifically in their ability to detect contest plagiarism. Our results indicate that the tools show significantly worse performance on the contest plagiarism because of the template code and the presence of other misleadingly similar code. Of the tested tools, token-based ones demonstrated the best performance in both variants of the dataset.
翻译:在本文中,我们首次描述并提出了一个特别针对竞赛抄袭的源代码抄袭数据集。该数据集包含251对Java竞赛编程任务的抄袭解决方案,以及660个非抄袭解决方案,但是,所述方法可以用于将来扩展数据集。重要的是,每个配对有两个版本:(a)“原始”和(b)删除参与者重复的模板代码,允许在不同的环境中评估工具。我们使用收集的数据集比较了可用的源代码抄袭检测工具,包括最先进的工具,特别是它们在检测竞赛抄袭方面的能力。我们的结果表明,由于模板代码和存在其他具有误导性但相似的代码,工具在竞赛抄袭方面表现出显着较差的性能。在两个数据集变体中,基于令牌的工具表现出最优秀的性能。