Inference of transfer operators from data is often formulated as a classical problem that hinges on the Ulam method. The usual description, which we will call the Ulam-Galerkin method, is in terms of projection onto basis functions that are characteristic functions supported over a fine grid of rectangles. In these terms, the usual Ulam-Galerkin approach can be understood as density estimation by the histogram method. Here we show that the problem can be recast in statistical density estimation formalism. This recasting of the classical problem, is a perspective that allows for an explicit and rigorous analysis of bias and variance, and therefore toward a discussion of the mean square error. Keywords: Transfer Operators; Frobenius-Perron operator; probability density estimation; Ulam-Galerkin method;Kernel Density Estimation.
翻译:从数据中传输操作员的推论往往被描述成一个依赖Ulam方法的经典问题。通常的描述,即我们称之为Ulam-Galerkin方法,是用投影方式将典型功能作为基础功能,这些功能是在精细矩形网格上支持的。在这些术语中,通常的Ulam-Galerkin方法可以被直方图方法理解为密度估计。这里我们表明,这个问题可以在统计密度估计形式上重新表述。这种对古典问题的重新表述,是能够对偏差和差异进行明确和严格分析的观点,从而可以对平均方差进行讨论。关键词:传输操作员;Frobenius-Perron操作员;概率密度估计;Ulam-Galerkin方法;Kernel Density Estimation。