The main theoretical obstacle to establish the original energy dissipation laws of Runge-Kutta methods for phase-field equations is to verify the maximum norm boundedness of the stage solutions without assuming global Lipschitz continuity of the nonlinear bulk. We present a unified theoretical framework for the energy stability of three effective classes of Runge-Kutta methods, including the additive implicit-explicit Runge-Kutta, explicit exponential Runge-Kutta and corrected integrating factor Runge-Kutta methods, for the Swift-Hohenberg and phase field crystal models. By the standard discrete energy argument, it is proven that the three classes of Runge-Kutta methods preserve the original energy dissipation laws if the associated differentiation matrices are positive definite. Our main tools include the differential form with the associated differentiation matrix, the discrete orthogonal convolution kernels and the principle of mathematical induction. Many existing Runge-Kutta methods in the literature are revisited by evaluating the lower bound on the minimum eigenvalues of the associated differentiation matrices. Our theoretical approach paves a new way for the internal nonlinear stability of Runge-Kutta methods for dissipative semilinear parabolic problems.


翻译:暂无翻译

1
下载
关闭预览

相关内容

meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员