In this paper, we design a novel Bregman gradient policy optimization framework for reinforcement learning based on Bregman divergences and momentum techniques. Specifically, we propose a Bregman gradient policy optimization (BGPO) algorithm based on the basic momentum technique and mirror descent iteration. At the same time, we present an accelerated Bregman gradient policy optimization (VR-BGPO) algorithm based on a momentum variance-reduced technique. Moreover, we introduce a convergence analysis framework for our Bregman gradient policy optimization under the nonconvex setting. Specifically, we prove that BGPO achieves the sample complexity of $\tilde{O}(\epsilon^{-4})$ for finding $\epsilon$-stationary point only requiring one trajectory at each iteration, and VR-BGPO reaches the best known sample complexity of $\tilde{O}(\epsilon^{-3})$ for finding an $\epsilon$-stationary point, which also only requires one trajectory at each iteration. In particular, by using different Bregman divergences, our methods unify many existing policy optimization algorithms and their new variants such as the existing (variance-reduced) policy gradient algorithms and (variance-reduced) natural policy gradient algorithms. Extensive experimental results on multiple reinforcement learning tasks demonstrate the efficiency of our new algorithms.


翻译:在本文中,我们设计了一个基于布雷格曼差异和动力技术的新型布雷格曼梯度政策优化框架,用于强化学习。具体地说,我们提议基于基本动力技术的布雷格曼梯度政策优化(BGPO)算法(BGPO)和反向下向迭代法。同时,我们提出基于动力差异减慢技术的加速布雷格曼梯度政策优化(VR-BGPO)算法(VR-BGPO)。此外,我们为在非康韦克斯设置下找到布雷格曼梯度政策优化引入一个趋同分析框架。具体地说,我们证明英国格曼梯度政策优化(Emplon=O}(\\\\\\\\\\\4}4})的样本复杂度(BGPO)的精度。具体地说,通过使用不同的布雷格纳(Bregr)政策递增级法,我们现有的政策递增性变异性(我们的现行政策变异性)的演化方法,将现行政策演化方法统一。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
算法优化|梯度下降和随机梯度下降 — 从0开始
全球人工智能
8+阅读 · 2017年12月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月29日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
算法优化|梯度下降和随机梯度下降 — 从0开始
全球人工智能
8+阅读 · 2017年12月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员