The StochAstic Recursive grAdient algoritHm (SARAH) algorithm is a variance reduced variant of the Stochastic Gradient Descent (SGD) algorithm that needs a gradient of the objective function from time to time. In this paper, we remove the necessity of a full gradient computation. This is achieved by using a randomized reshuffling strategy and aggregating stochastic gradients obtained in each epoch. The aggregated stochastic gradients serve as an estimate of a full gradient in the SARAH algorithm. We provide a theoretical analysis of the proposed approach and conclude the paper with numerical experiments that demonstrate the efficiency of this approach.
翻译:Stochast Recursive grAdian algoritHm (SAAH) 算法是Stochistic 梯度梯度(SGD) 算法的变数变数变数变数,它不时需要目标函数的梯度。 在本文中,我们删除了完全梯度计算的必要性。这是通过使用随机重整策略和汇总每个时代获得的随机重整梯度来实现的。 汇总的蒸气梯度是SARAH算法中完全梯度的估计数。 我们对拟议方法进行理论分析,并在文件结束时进行数字实验,以证明这一方法的效率。