The monotonicity of discrete Laplacian, i.e., inverse positivity of stiffness matrix, im5 plies discrete maximum principle, which is in general not true for high order schemes on unstructured meshes. But on structured meshes, it is possible to have high order accurate monotone schemes. We first review previously known high order accurate inverse positive schemes, all of which are fourth order accurate with proven monotonicity on uniform meshes. Then we discuss the monotonicity of a fourth order variational difference scheme on quasi-uniform meshes and prove the inverse positivity of a fifth order accurate variational difference scheme on a uniform mesh.
翻译:离散的单色色素的单色度,即僵硬矩阵的反正正比, 5个离散最大原则, 一般来说, 对于结构松散的 meshe 的高顺序计划来说并非如此。 但是, 在结构化的 meshe 中, 有可能有高顺序准确的单色酮计划。 我们首先审查以前已知的高顺序准确的反向正阳性计划, 所有这些都是第四顺序的准确度, 而经证明的对齐色素的单色素的单色度。 然后我们讨论关于准统一模类的第四顺序变化差异计划的单色性, 并证明在统一的网格上, 第五顺序准确的变异性计划是反向的。