A sufficient amount of annotated data is required to fine-tune pre-trained language models for downstream tasks. Unfortunately, attaining labeled data can be costly, especially for multiple language varieties/dialects. We propose to self-train pre-trained language models in zero- and few-shot scenarios to improve the performance on data-scarce dialects using only resources from data-rich ones. We demonstrate the utility of our approach in the context of Arabic sequence labeling by using a language model fine-tuned on Modern Standard Arabic (MSA) only to predict named entities (NE) and part-of-speech (POS) tags on several dialectal Arabic (DA) varieties. We show that self-training is indeed powerful, improving zero-shot MSA-to-DA transfer by as large as \texttildelow 10\% F$_1$ (NER) and 2\% accuracy (POS tagging). We acquire even better performance in few-shot scenarios with limited labeled data. We conduct an ablation experiment and show that the performance boost observed directly results from the unlabeled DA examples for self-training and opens up opportunities for developing DA models exploiting only MSA resources. Our approach can also be extended to other languages and tasks.


翻译:需要足够多的附加说明数据,才能微调经过培训的下游任务的语言模式。 不幸的是,获得贴标签的数据可能成本高昂,特别是多语言品种/方程式。我们提议在零和少发情景下自我培训经过培训的预先培训的语言模式,只使用数据丰富的资源来改进数据偏差方言的性能。我们用对现代标准阿拉伯文(MSA)进行微调的语言模式来预测一些方言(NE)和部分语音(POS)标志,从而证明我们的方法在阿拉伯顺序标签方面的有用性。我们进行模拟试验并显示,从未加标签的DA实例中直接观察到的自我培训和开发其他语言的实绩提升,也为开发DA模式开辟机会。

0
下载
关闭预览

相关内容

【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
32+阅读 · 2020年3月30日
【Amazon】使用预先训练的Transformer模型进行数据增强
专知会员服务
57+阅读 · 2020年3月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关VIP内容
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
32+阅读 · 2020年3月30日
【Amazon】使用预先训练的Transformer模型进行数据增强
专知会员服务
57+阅读 · 2020年3月6日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员