Modern microbiome compositional data are often high-dimensional and exhibit complex dependency among microbial taxa. However, existing approaches to analyzing microbiome compositional data either do not adequately account for the complex dependency or lack scalability to high-dimensionality, which presents challenges in appropriately incorporating the "random effects" in microbiome compositions in the resulting statistical analysis. We introduce a generative model called the "logistic-tree normal" (LTN) model to address this need. The LTN marries two popular classes of models -- the log-ratio normal (LN) and the Dirichlet-tree (DT) -- and inherits key benefits of each. LN models are flexible in characterizing covariance among taxa but lacks scalability to higher dimensions; DT avoids this issue through a tree-based binomial decomposition but incurs restrictive covariance. The LTN incorporates the tree-based decomposition as the DT does, but it jointly models the corresponding binomial probabilities using a (multivariate) logistic-normal distribution as in LN models. It therefore allows rich covariance structures as LN, along with computational efficiency realized through a P\'olya-Gamma augmentation on the binomial models at the tree nodes. Accordingly, Bayesian inference on LTN can readily proceed by Gibbs sampling. The LTN also allows common techniques for effective inference on high-dimensional data -- such as those based on sparsity and low-rank assumptions in the covariance structure -- to be readily incorporated. Depending on the goal of the analysis, LTN can be used either as a standalone model or embedded into more sophisticated hierarchical models. We demonstrate its use in estimating taxa covariance and in mixed-effects modeling. Finally, we carry out an extensive case study using an LTN-based mixed-effects model to analyze a longitudinal dataset from the DIABIMMUNE project.


翻译:现代微生物构成数据往往是高度的,在微生物分类中表现出复杂的依赖性。然而,现有分析微生物构成数据的方法要么不能充分说明复杂的依赖性,要么不能充分说明微生物构成数据具有高度的可伸缩性,这在适当将“随机效应”纳入微生物构成中提出了挑战。我们引入了一个称为“逻辑树正常”(LTN)的基因化模型来解决这一需要。LTN结合了两种受欢迎的模型 -- -- 逻辑-河平流正常(LN)和Drichlet树(DT) -- -- 并继承了每种模型的关键效益。LN模型在说明税的共变异性时具有灵活性,但缺乏向更高层面的可伸缩性;DTT在将“随机效应”模型纳入基于树木的变异性模型(LTN),但将基于树木的变异性模型与基于DTTD的变异性模型结合起来,但用一个(多变异性)的逻辑-正常分布(LN模型),因此,可以让丰富的上等级结构结构结构结构结构化结构,作为LILolrmaral最终的变变化数据, 数据,可以用来在硬化变变变变变变变变变变变变数据中进行。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
63+阅读 · 2021年8月7日
边缘机器学习,21页ppt
专知会员服务
78+阅读 · 2021年6月21日
专知会员服务
41+阅读 · 2020年12月18日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
106+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
63+阅读 · 2021年8月7日
边缘机器学习,21页ppt
专知会员服务
78+阅读 · 2021年6月21日
专知会员服务
41+阅读 · 2020年12月18日
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
106+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员